Pythagoras Theorem

Objective: Know and use Pythagoras's theorem for right-angled triangles

Question 1

ABC is a right-angled triangle.
$\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$
Calculate the length of AC.

Question 2

Diagram not to scale

ABC is a right-angled triangle.
$\mathrm{AB}=11 \mathrm{~cm}, \mathrm{AC}=18 \mathrm{~cm}$
Calculate the length of BC .
Give your answer correct to 1 decimal place.

Question 3

ABCD is a rectangle.
$\mathrm{AB}=19 \mathrm{~m}, \mathrm{AD}=13 \mathrm{~m}$
Work out the length of the diagonal BD.
Give your answer correct to 3 significant figures.

Question 4

ABC is a right angled triangle.
$\mathrm{AB}=8 \mathrm{~m}, \mathrm{BC}=14 \mathrm{~m}$
Calculate the length of AC .
Give your answer correct to 1 decimal place.

Question 5

ABC is a right angled triangle.
$\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=21 \mathrm{~cm}$
Calculate the length of BC .
Give your answer correct to 1 decimal place.

Question 6

ABCD is a rectangle.
$\mathrm{AB}=23 \mathrm{~m}, \mathrm{AD}=12 \mathrm{~m}$
Work out the length of the diagonal BD.
Give your answer correct to 3 significant figures.

Trigonometric Ratios

Objective: Know and use the trigonometric ratios for right-angled triangles

Question 7

ABC is a right angled triangle.
$\mathrm{BC}=14 \mathrm{~m}$ and the angle ACB is 32°
Calculate the length of AB . Give your answer to 1 decimal place.

(Total 3 marks)

Question 8

ABC is a right angled triangle.
$\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=27 \mathrm{~cm}$
Diagram not to Calculate the angle BAC.
Give your answer correct to the nearest degree.

(Total 3 marks)

Question 9
 Using your notes from yesterday, prove Pythagoras' Theorem.

